博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
[转载]《编程之美: 求二叉树中节点的最大距离》的另一个解法
阅读量:6956 次
发布时间:2019-06-27

本文共 4439 字,大约阅读时间需要 14 分钟。

本文提出的解法比原书清晰的多,全文转载一下。

原作者:

原文链接:

 

昨天花了一个晚上为《编程之美》,在豆瓣写了一篇书评。书评就不转载到这里了,取而代之,在这里介绍书里其中一条问题的另一个解法。这个解法比较简短易读及降低了空间复杂度,或者可以说觉得比较「美」吧。

问题定义

如果我们把二叉树看成一个图,父子节点之间的连线看成是双向的,我们姑且定义"距离"为两节点之间边的个数。写一个程序求一棵二叉树中相距最远的两个节点之间的距离。

书上的解法

书中对这个问题的分析是很清楚的,我尝试用自己的方式简短覆述。

计算一个二叉树的最大距离有两个情况:

  • 情况A: 路径经过左子树的最深节点,通过根节点,再到右子树的最深节点。
  • 情况B: 路径不穿过根节点,而是左子树或右子树的最大距离路径,取其大者。

只需要计算这两个情况的路径距离,并取其大者,就是该二叉树的最大距离。

我也想不到更好的分析方法。

但接着,原文的实现就不如上面的清楚 (源码可从下载):

// 数据结构定义struct NODE{    NODE* pLeft;        // 左子树    NODE* pRight;       // 右子树    int nMaxLeft;       // 左子树中的最长距离    int nMaxRight;      // 右子树中的最长距离    char chValue;       // 该节点的值}; int nMaxLen = 0; // 寻找树中最长的两段距离void FindMaxLen(NODE* pRoot){    // 遍历到叶子节点,返回    if(pRoot == NULL)    {        return;    }     // 如果左子树为空,那么该节点的左边最长距离为0    if(pRoot -> pLeft == NULL)    {        pRoot -> nMaxLeft = 0;    }     // 如果右子树为空,那么该节点的右边最长距离为0    if(pRoot -> pRight == NULL)    {        pRoot -> nMaxRight = 0;    }     // 如果左子树不为空,递归寻找左子树最长距离    if(pRoot -> pLeft != NULL)    {        FindMaxLen(pRoot -> pLeft);    }     // 如果右子树不为空,递归寻找右子树最长距离    if(pRoot -> pRight != NULL)    {        FindMaxLen(pRoot -> pRight);    }     // 计算左子树最长节点距离    if(pRoot -> pLeft != NULL)    {        int nTempMax = 0;        if(pRoot -> pLeft -> nMaxLeft > pRoot -> pLeft -> nMaxRight)        {            nTempMax = pRoot -> pLeft -> nMaxLeft;        }        else        {            nTempMax = pRoot -> pLeft -> nMaxRight;        }        pRoot -> nMaxLeft = nTempMax + 1;    }     // 计算右子树最长节点距离    if(pRoot -> pRight != NULL)    {        int nTempMax = 0;        if(pRoot -> pRight -> nMaxLeft > pRoot -> pRight -> nMaxRight)        {            nTempMax = pRoot -> pRight -> nMaxLeft;        }        else        {            nTempMax = pRoot -> pRight -> nMaxRight;        }        pRoot -> nMaxRight = nTempMax + 1;    }     // 更新最长距离    if(pRoot -> nMaxLeft + pRoot -> nMaxRight > nMaxLen)    {        nMaxLen = pRoot -> nMaxLeft + pRoot -> nMaxRight;    }}

 

这段代码有几个缺点:

  1. 算法加入了侵入式(intrusive)的资料nMaxLeft, nMaxRight
  2. 使用了全局变量 nMaxLen。每次使用要额外初始化。而且就算是不同的独立资料,也不能在多个线程使用这个函数
  3. 逻辑比较复杂,也有许多 NULL 相关的条件测试。

我的尝试

我认为这个问题的核心是,情况A 及 B 需要不同的信息: A 需要子树的最大深度,B 需要子树的最大距离。只要函数能在一个节点同时计算及传回这两个信息,代码就可以很简单:

#include 
using namespace std; struct NODE{ NODE *pLeft; NODE *pRight;}; struct RESULT{ int nMaxDistance; int nMaxDepth;}; RESULT GetMaximumDistance(NODE* root){ if (!root) { RESULT empty = { 0, -1 }; // trick: nMaxDepth is -1 and then caller will plus 1 to balance it as zero. return empty; } RESULT lhs = GetMaximumDistance(root->pLeft); RESULT rhs = GetMaximumDistance(root->pRight); RESULT result; result.nMaxDepth = max(lhs.nMaxDepth + 1, rhs.nMaxDepth + 1); result.nMaxDistance = max(max(lhs.nMaxDistance, rhs.nMaxDistance), lhs.nMaxDepth + rhs.nMaxDepth + 2); return result;}

计算 result 的代码很清楚;nMaxDepth 就是左子树和右子树的深度加1;nMaxDistance 则取 A 和 B 情况的最大值。

为了减少 NULL 的条件测试,进入函数时,如果节点为 NULL,会传回一个 empty 变量。比较奇怪的是 empty.nMaxDepth = -1,目的是让调用方 +1 后,把当前的不存在的 (NULL) 子树当成最大深度为 0。

除了提高了可读性,这个解法的另一个优点是减少了 O(节点数目) 大小的侵入式资料,而改为使用 O(树的最大深度) 大小的栈空间。这个设计使函数完全没有副作用(side effect)。

测试代码

以下也提供测试代码给读者参考 (页数是根据第7次印刷,节点是由上至下、左至右编号):

void Link(NODE* nodes, int parent, int left, int right){    if (left != -1)        nodes[parent].pLeft = &nodes[left];      if (right != -1)        nodes[parent].pRight = &nodes[right];} void main(){    // P. 241 Graph 3-12    NODE test1[9] = { 0 };    Link(test1, 0, 1, 2);    Link(test1, 1, 3, 4);    Link(test1, 2, 5, 6);    Link(test1, 3, 7, -1);    Link(test1, 5, -1, 8);    cout << "test1: " << GetMaximumDistance(&test1[0]).nMaxDistance << endl;     // P. 242 Graph 3-13 left    NODE test2[4] = { 0 };    Link(test2, 0, 1, 2);    Link(test2, 1, 3, -1);    cout << "test2: " << GetMaximumDistance(&test2[0]).nMaxDistance << endl;     // P. 242 Graph 3-13 right    NODE test3[9] = { 0 };    Link(test3, 0, -1, 1);    Link(test3, 1, 2, 3);    Link(test3, 2, 4, -1);    Link(test3, 3, 5, 6);    Link(test3, 4, 7, -1);    Link(test3, 5, -1, 8);    cout << "test3: " << GetMaximumDistance(&test3[0]).nMaxDistance << endl;     // P. 242 Graph 3-14    // Same as Graph 3-2, not test     // P. 243 Graph 3-15    NODE test4[9] = { 0 };    Link(test4, 0, 1, 2);    Link(test4, 1, 3, 4);    Link(test4, 3, 5, 6);    Link(test4, 5, 7, -1);    Link(test4, 6, -1, 8);    cout << "test4: " << GetMaximumDistance(&test4[0]).nMaxDistance << endl;}

你想到更好的解法吗?

你可能感兴趣的文章
2012年50个顶级的photoshop教程:(一)图形绘画类
查看>>
Linux-RHEL 7.2实验环境的搭建
查看>>
【安全牛学习笔记】端口扫描(二)
查看>>
php 获取月第一天和最后一天
查看>>
CentOS Linux安装JDK
查看>>
linux中对swap分区的管理
查看>>
wecenter屏蔽模板目录,防止别人访问到
查看>>
centos7源码搭建lamp基于模块化方式
查看>>
强大的nmcli命令独家揭秘
查看>>
信息系统项目管理师教程第3版教程 2017年9月出版
查看>>
StratoIO WebPrinter控件的下载与安装的步骤介绍
查看>>
SSH隧道
查看>>
virtualbox设置ubuntu的共享目录
查看>>
安卓调用webservice的一种方式及需注意的问题
查看>>
DIY 微信HD版共享
查看>>
python入门(四)python对文件的操作
查看>>
C# 使用接口进行排序
查看>>
干货!APP推广全周期解决方案 只需做好这6步
查看>>
存储基础网络面临的几大问题
查看>>
高效|五大模式和两大创新,看懂智能制造具体呈现
查看>>